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           Introduction 
 Accelerated data-driven learning aims to reveal hidden rela-
tionships in data sets, usually with the end goal of building 
predictive models that outperform traditional ones. Recently, 
machine-learning (ML) models have enjoyed success in 
solving long-standing computer science problems that have 
eluded direct solution. Examples of such breakthroughs  1 

include those in image recognition, speech recognition, and 
even “scientifi c” tasks such as analyzing particle accelerator 
data. The application of ML involves three steps: (1) curation 
of an input data set of suffi cient size and quality, (2) mapping 
the input data to features/descriptors and targets, and (3) model 
fi tting. 

 Several features make the Materials Project  2   database 
uniquely suited for building ML models. First, the variety 
and quality of data available, both in terms of the proper-
ties (e.g., formation energies, energies above the convex 
hull, bandgaps, elastic constants, and surface energies) as well 

as the chemistry coverage (most known, unique, crystalline 
systems in the International Crystallographic Structure 
Database  3   [ICSD]), are obtained in a self-consistent man-
ner to yield directly comparable properties across structure 
and chemistry. (The convex hull is the compound energy 
that prevents decomposition into other compounds or elements 
in that composition space.) Second, the Materials Project 
takes great efforts to reduce duplication of data by ensuring the 
uniqueness of materials and computed properties, which enable 
fi tted ML models to explore structure–property relations without 
being skewed toward specifi c, heavily studied structure spaces. 
This is becoming an increasingly important consideration as 
the Materials Project and similar databases  4 , 5   now contain com-
putational data sets ranging on the order of 10 3  materials  6   –   8 

(for computationally expensive property evaluations) to approxi-
mately 10 4 –10 5  materials  9 , 10   (for computationally inexpensive 
property evaluations). Finally, the Materials Project provides 
a robust Application Programming Interface  11   as well as a 
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high-level Python (programming language) wrapper in pymat-
gen,12 which facilitates the querying of large data sets for ML. 
Despite the recent and radical increase in available and sys-
tematic materials data, there are still challenges in the applica-
tion of ML models. The most prominent of these are discussed 
in the following sections.

Data limitations and the use of  
features/descriptors
One of the historic limitations to applying ML to the materi-
als science domain has been obtaining data sets large and 
diverse enough to robustly train and validate ML models. 
Even the Materials Project database is not large enough to use 
“big data” approaches that include tens of millions of training 
data points. One way to improve the performance of ML for 
smaller data sets typically encountered in materials science is 
to extract features (or descriptors) from the input data. In this 
context, a set of features (or descriptors) refers to data derived 
from the original raw inputs that encompass domain knowl-
edge and is expected to simplify the ML problem (Figure 1). 
Depending on the complexity of the problem and the scarcity 
of available data, the choice of appropriate descriptors can 
have a large impact on final performance of a ML model.13

Early efforts at feature extraction in the materials science 
domain were concentrated on the chemical composition. The 
raw string format of a composition (e.g., “LiFePO4”) is not  
amenable to efficient learning because machine-learning algo-
rithms are unaware that this text represents a chemical com-
position with specific physical characteristics. Studies have 
instead employed numerical descriptors that represent physi-
cal aspects of the composition such as sums of covalent radii, 
differences in electronegativity, or the average melting point  
of the component elements in the composition.14,15 This  
descriptor generation has been a crucial preprocessing step 
to machine learning for a wide array of properties, including 
melting points,16 thermoelectric figures of merit,17 thermal 

conductivity,9 solute diffusion barriers in face-centered-cubic 
metals,18 and elastic properties,19 to name a few.

One shortcoming of compositional descriptors is the inabil-
ity to distinguish between entries sharing a chemical formula 
but possessing different crystal structures (e.g., diamond from 
graphite or carbon nanotubes). Compositional descriptors 
alone have had the most success in problems where the crystal 
structure has been held constant or was the intended vari-
able to predict.20,21 One active research topic is how to best 
extract descriptors from a crystal structure which should be 
invariant to symmetry operations of the crystal. For example, 
translating all the atoms, rotating the entire crystal, changing 
the “order” in which atoms are listed, and creating a super-
cell are all operations that should not change the value of a 
well-formed crystal structure descriptor. Recently, researchers 
have devised many such formulations,22–29 including several 
variants of a descriptor for the complex network of coulomb 
interactions within a structure. Faber et al. recently tested this 
using a data set of 3938 formation energies retrieved from the 
Materials Project database.28

It is also possible to generate features by mixing together 
combinations of the original features according to various 
equations,30,31 (e.g., as the sum of two features divided by a 
third). Although it is possible to generate many thousands 
of features or more, selecting the most relevant compound 
features is still an area of active research. The presence of 
redundant or uninformative features can reduce the overall 
performance of machine learning, making it prone to over-
fitting (i.e., reproducing patterns present in the known data 
that will not accurately reflect new data). Various feature 
selection methods devised by the ML community32 and cer-
tain ML algorithms such as kernel ridge regression employ 
regularization parameters that can be used to penalize the 
use of too many features.

Although most descriptors are constructed manually  
using domain knowledge or some mathematical basis, it is also 

possible to automatically construct descriptors 
with sufficient data. Representation learning32 
tackles the issue of how to best represent raw 
ML inputs. One approach is an autoencoder,  
which is a neural network architecture designed 
to transform the original input into a reduced  
set (or a latent representation) that can faith-
fully be transformed back into the full input. 
This method can be used to generate repre-
sentations on a large unlabeled data set and 
transfer this representation model to a small-
er but similar data set. For example, Google 
trained an autoencoder model on 10 million 
image thumbnails to uncover features that 
corresponded to “face descriptors” or “cat 
descriptors” from unlabeled data.33 These 
automatically generated features, which did 
not require domain knowledge to devise, were 
used to boost the performance of an image 

Figure 1.  Example of machine-learning (ML) workflow, including the generation of descriptors. 
Each raw input is transformed into a set of descriptors. Here, all raw inputs are chemical 
compositions; they might instead be a crystal structure, experimental spectrum, or 
microstructural image. The descriptors represent a set of numbers that encapsulate the 
raw inputs in a compact and physically meaningful way. For example, one descriptor of a 
composition might be the variation in electronegativity of its component elements, which 
would indicate the degree to which the compound might be metallic, covalent, or ionic. 
The set of descriptors (sometimes in conjunction with the raw inputs) and known outputs 
are then used to efficiently train the ML model.
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classifier by more than 70% over the existing state-of-the-
art models on the well-known Imagenet34 data set. This type 
of approach is termed “transfer learning” and variants of this 
approach have recently been applied to the materials science 
domain as well.35 Such research hints that it might be increas-
ingly possible in the future to “auto-learn” descriptors given 
large and sufficiently diverse data sets.

ML and accelerated discovery
An attractive feature of ML models is their speed, especially 
compared to obtaining new materials property data using  
either experiments or computations. In this section, we high-
light several examples of applying ML models to computed  
materials data. As an example, phase stability presents a ubiq-
uitous property of interest in materials science. Faber and 
co-workers36 applied kernel ridge regression to predict the for-
mation energies of two million elpasolite (ABC2D6) structures 
with a mean average error of approximately 100 meV/atom. 
Considering that approximately 90% of the crystals in the 
ICSD have energy above the hull (Ehull ) < 70 meV/atom,37 and 
the errors of density functional theory (DFT)-calculated for-
mation energies of ternary oxides from binary oxides relative 
to experiments are ∼24 meV/atom,38 there is still significant 
room for improvement in fit-to-DFT stability predictions. The 
choice of the target metric in particular may not be the most 
appropriate for ML applications. Both, Ehull and the formation  
energy (Ef) (referenced to elemental compounds or binary  
oxides) are not ideal learning targets due to the variation in 
reference states for each species across dif-
ferent structures, which introduces addition-
al DFT errors that can bias the learning and 
discovery process.39 Faber et al. identified 
128 new expected stable elpasolite structures, 
90 of which were unique stoichiometries and 
could not have been identified in the same 
timeframe using direct DFT computation, 
despite the lack of accuracy.

Bandgap is another important material prop-
erty commonly estimated via first-principles 
calculations. The 54,000 band structures in 
the Materials Project are calculated by DFT 
with the generalized gradient approximation 
(GGA), which underestimates the bandgap due 
to the approximation in exchange-correlation 
functionals, the self-interaction error, and the 
missing derivative discontinuity. Common solu-
tions to this problem rely on more accurate, 
but more computationally expensive, meth-
ods such as the modified Becke–Johnson 
(mBJ) functional,40 the delta self-consistent-
field (∆SCF) method,41 hybrid functionals 
(HSE06)42 or GW calculations based on many- 
body perturbation theory.43 Lee and co-workers,44  
attempted to circumvent this by learning from 
the cheaper PBE bandgap (Eg [PBE]) or mBJ 

bandgap (Eg [mBJ]), with an additional 18 descriptors to pre-
dict the more accurate G0W0 bandgap (Eg (G0W0)). The best 
model trained by nonlinear support vector regression (SVR) 
yielded a root-mean-square (rms) error of 0.24 eV (Figure 2).

Another important set of materials properties is mechani-
cal behavior. The elastic bulk and shear moduli (K and G, 
respectively) govern the stress–strain relations of isotropic 
materials, and are highly correlated to properties such as hard-
ness45 and thermal conductivity.46 Recently, 1940 computed 
elastic constants from the Materials Project were utilized as a 
training set for a gradient boosting machine local polynomial 
regression (GBM-Locfit) model to predict K and G for k-nary 
inorganic polycrystalline compounds by de Jong.19 After care-
ful optimization of hyper-parameters through tenfold cross-
validation, the rms error of K and G were 0.0750 and 0.1378 
(log(GPa)), respectively (Figure 3). The authors found that 
for both K and G, the top four most important descriptors were  
V (volume per atom), Rn (elemental row number), Ec (cohesive 
energy), and X (mean of elemental electronegativity). The model 
was therefore used to screen for hard materials among 30,000 
compounds from the Materials Project, with Mg(B6C)2, Sc2CrB6, 
and Mg2B24C discovered as promising candidates.19 This work is 
a demonstration of how data from the Materials Project can be 
directly used to extract useful information and inspire new high-
throughput screening.

Besides predicting basic materials properties, ML can also 
assist in developing an understanding of the fundamental 
physics of crystals by constructing force fields. Force-field 

Figure 2.  Comparison of the Eg (G0W0) method and Eg (predicted). (a, c) The ordinary 
least-squares regression model with Eg (PBE) as a single predictor. (b, d) The support 
vector regression model with the 18-predictor set. A randomly chosen result from 100 trials 
is shown. Reprinted with permission from Reference 44. © 2016 IOP Publishing.
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development allows for the simulation of systems that con-
tain thousands of atoms and over time scales of nanosec-
onds to microseconds. Chen and co-workers47 applied ML 
techniques to build a spectral neighbor analysis potential 
(SNAP) model for Mo, which outperforms existing Mo 
potentials in accuracy over energies, stress tensors, elastic 
properties, melting point, and surface and grain-boundary 
energies using the data and software tools developed by the 
Materials Project. The data set was further screened by a prin-
cipal component analysis, which ensures distinct local envi-
ronments among data. A differential evolution algorithm was 
employed to simultaneously optimize the weights of the ML 
model and spectrum parameters used to calculate features.  
This work, besides presenting a superior force field for Mo, 
showcases inspiring strategies in data preparation and global 
optimization.

It is also worth noting that the fruit of ML can in return 
empower the Materials Project. Simultaneously introduced 
with XASdb, a database containing ∼800,000 K-edge XANES 
spectra, a novel ensemble-learned spectrum identification  
algorithm was proposed to enable instant matching between 
experimental XAS spectra and the references in XASdb.48 The 
algorithm classifies an input spectrum according to chemistry 
and oxidation state, using a group of 33 weakly correlated 
algorithms in an ensemble akin to a random forest, to span 
the whole space of materials chemistry and oxidation states 
available in the Materials Project. This divide-and-conquer 
approach correctly identified the oxidation state and coordina-
tion environment with 84.2% accuracy in a test of 19 high-
quality experimental spectra and is currently implemented in 
the Materials Project for rapid classification of measured XAS 
spectra. The combination of the database and the designed 
algorithm significantly accelerates materials characterization  
using XAS and XANES spectra, and represents a powerful 
addition to the Materials Project.

Finally, a recent development is the applica-
tion of deep learning to materials science. Xie  
and coworkers49 developed convolutional neu-
ral networks (CNN) to learn from the “crystal 
graph,” which represents the crystal structure 
using graph nodes and edges that represent 
atoms and bonds. A Materials Project data set 
containing 46,744 materials, covering 87 ele-
ments, seven lattice systems, and 216 space 
groups, with seven properties (DFT calculated 
formation energy, absolute energy, bandgap, 
Fermi energy, bulk moduli, shear moduli, and 
the Poisson’s ratio) was used for training. The 
results show that with careful design of crystal 
representation, CNN models can be general-
ized to predict a wide range of properties with  
a level of accuracy comparable to DFT. The  
effort of generalizing both the structure and tar-
get space was greatly emphasized in this work 
and should be acknowledged. Another merit 

in the developed CNN model is the interpretability, meaning 
insights can be drawn from analyzing the contribution to the 
target from different local environments of atoms, which were 
encoded in the input vectors.

Outlook
The discussed examples showcase the power of combining 
robust and diverse materials data with ML techniques. Besides 
directly feeding existing data or initial structures for model 
training, the Materials Project database and its related infra-
structures for structural analysis12 and high-throughput calcu-
lations50 are also enabling efficient generation of new data51 
for specific learning tasks. We emphasize that while increasing 
accuracy is always a goal of any ML study, efforts should 
focus on increasing the scale, diversity and quality of data. For 
example, while the few hundred data points, as used in Lee’s 
work44 on bandgap prediction, as well as Medasani’s work52 on 
classifying defect types in B2 intermetallics were used to extract 
trends, such sets are insufficient for the automatic training of 
robust ML models. Furthermore, most models are only appli-
cable within constrained structure space,36,53,54 but a truly robust 
model across most structure types is still awaited. Hence, until 
enough consistent and reliable materials data is available across 
structure and chemical spaces, the key may lie in the develop-
ment of better compact yet descriptive structure descriptors.

The forward approach adopted by the Materials Project is to 
support both avenues, by (1) continuously generating and making 
available ever-growing data sets of fundamental materials prop-
erties across diverse chemistries and structures, and (2) develop-
ing algorithms to generate descriptor functions that can be used in 
ML methods for smaller data sets. The Materials Project has been 
continually releasing new types of large data sets that can serve 
as the basis for future machine learning studies.7,8,55,56 Further, the 
Materials Project is collaborating on the development of the mat-
miner (www.github.com/hackingmaterials/matminer) software 

Figure 3.  Comparison of density functional theory (DFT) training data with GBM-Locfit 
predictions for K (a) and G (b). The training set consists of 65 unary, 1091 binary, 776 ternary, 
and eight quaternary compounds.19
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platform, which provides open-source implementations in the 
Python programming language for a variety of descriptors of all 
types that have been proposed in the literature. For example, the 
Materials Project has recently added order parameter functions 
that are highly sensitive to the local environment (e.g., a “tetra-
hedral” versus “square planar” arrangement of atoms around a 
central site57), and can be used to assess structure similarity or 
improve structure prediction performance. Our hope is that an 
abundant user base, a large well-curated database of properties 
and descriptors, combined with a community that is enthusiastic 
to employ machine learning in materials science will foster the 
next generation of advances in structure–property relations 
and materials discovery at an ever-increasing pace.
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